Optimal Multi-objective Discrete Decision Making Using a Multidirectional Modified Physarum Solver
نویسندگان
چکیده
This paper will address a bio-inspired algorithm able to incrementally grow decision graphs in multiple directions for discrete multi-objective optimization. The algorithm takes inspiration from the slime mould Physarum Polycephalum, an amoeboid organism that in its plasmodium state extends and optimizes a net of veins looking for food. The algorithm is here used to solve multi-objective Traveling Salesman and Vehicle Routing Problems selected as representative examples of multi-objective discrete decision making problems. Simulations on selected test case showed that building decision sequences in two directions and adding a matching ability (multidirectional approach) is an advantageous choice if compared with the choice of building decision sequences in only one direction (unidirectional approach). The ability to evaluate decisions from multiple directions enhances the performance of the solver in the construction and selection of optimal decision sequences.
منابع مشابه
Multidirectional Physarum Solver: an Innovative Bio-inspired Algorithm for Optimal Discrete Decision Making
This paper introduces a new bio-inspired algorithm for optimal discrete decision making, able to incrementally grow and explore decision graphs in multiple directions. The heuristic draws inspiration from the idea that building decision sequences from multiple directions and then combining the sequences is an optimal choice if compared with a unidirectional approach. The behaviour of the slime ...
متن کاملA Multi-Directional Modified Physarum Algorithm for Optimal Multi-Objective Discrete Decision Making
This paper will address an innovative bio-inspired algorithm able to incrementally grow decision graphs in multiple directions for discrete multi-objective optimisation. The algorithm takes inspiration from the slime mould Physarum Polycephalum, an amoeboid organism that in its plasmodium state extends and optimizes a net of veins looking for food. The algorithm is here used to solve multi-obje...
متن کاملUsing a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models
The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملA full ranking method using integrated DEA models and its application to modify GA for finding Pareto optimal solution of MOP problem
This paper uses integrated Data Envelopment Analysis (DEA) models to rank all extreme and non-extreme efficient Decision Making Units (DMUs) and then applies integrated DEA ranking method as a criterion to modify Genetic Algorithm (GA) for finding Pareto optimal solutions of a Multi Objective Programming (MOP) problem. The researchers have used ranking method as a shortcut way to modify GA to d...
متن کامل